

Procurement & Payment Services District Office Building D 4905 East Broadway Blvd., Room D206 Tucson, Arizona 85709-1420

Addendum No. 3 INVITING SEALED BIDS ITB No. 21/10039 Project: West Campus Laboratories Bldg. F Renovation

Issue Date: February 24, 2021

This addendum # 3 is issued to address questions and issues not answered in Addendum 2 and submitted by potential respondents during the Question period.

This addendum supplements and amends the original Construction Document specifications and drawings, dated January 8, 2020 and those reissued in Addendum #2. This Addendum 3 will be taken into account in preparing bids, and will become part of the Contract Documents. In case of conflicts between the Specifications, Drawings, and this Addendum, this Addendum shall govern.

Acknowledge receipt of this Addendum in the space provided on the bid form. Failure to do so may subject bidder to disqualification.

Addendum – Material changes to the solicitation.

Item One #1: Reissued Drawings

Mechanical, Electrical, Lab Plumbing drawings have been reissued by BWS. These reissued drawings are attached to this Addendum.

Item Two #2: Specifications

Specifications 233600, 233713 and 237313 have been reissued by BWS. These Specification documents are attached to this Addendum.

Item Three #3: Room finish schedule

BWS has clarified the ceiling tile specification. Refer to Question #4 and the attached BWS Addendum 3

Attachment:

Addendum 3, Construction Documents Prepared by BWS Architects 2/24/2021 – 21 pages

Questions and Answers – Addendum 3:

Question #1:	Reference Specifications Division 27 Telecommunications and Construction Drawings "Telecom" sheets T1.0, T1.1, T2.1, T2.2. After looking through and reviewing the drawings there is a few keynotes that call out on the Low Voltage work to be installed by the Owners vendor. Does this apply to the whole scope of work for the Division 27 ? Can you please advise so we know how to proceed?
Answer #1:	Pima College will provide vendor to install and terminate cabling only. All requirements shown on the Construction Drawings Sheets identified above, and Division 27 are the responsibility of the contractor.
Question #2:	Refer to Specification 135310, Drawing No. A2.7. Please confirm epoxy resin work surface color is graphite per finish legend on sheet A2.7. The specifications (135310 2.4 A.3a) reference epoxy resin work surface color to be black.
Answer #2:	Color name may vary by manufacturer or brand name.
Question #3:	Spec calls for alternating tread stair to hatch and then calls out ladder safety post for hatch. Ladder safety posts are for vertical rung ladders. Please advise
Answer #3:	Safety post and guardrail to be as per 077200
Question #4:	On the room finish schedule you have Armstrong Cirrus High NRC but do not have a number or grid type listed. When looking at that specific tile we found that there are various numbers associated with that tile name, for example NRC 556 or NRC 558. Please provide a specification for exact tile as well as grid dimension (15/16 or $9/16$)
Answer #4:	Ceiling tile to be Armstrong 574 or equal. Grid dimension to be as per section 095133
Question #5:	Worker's comp limits: \$2M per accident, \$1M disease. Would it be acceptable to carry a limit of \$1M per accident?
Answer #5:	No
Question #6: Answer #6:	Confirm that the AV is not part of General Contractor's responsibility. AV is not part of the Contractors responsibility.
Question #7:	Please provide a drawing of MDF or IDF buildout (rack layout, tray layout, arounding layout, patch papel/switch layout and grounding layout)
Answer #7:	Contractor's responsibility for the IDF build out is shown on the Construction Plans page T2.2. Only the rack and cable tray are included. Owner will install network MDF equipment which includes grounding layout and panel layouts
Question #8:	Please provide a drawing of MDF or IDF buildout (rack layout, tray layout, grounding layout, patch panel/switch layout and grounding layout).
Answer #8:	Contractor's responsibility for the IDF build out is shown on the Construction Plans page T2.2. Only the rack and cable tray are included. Owner will install network MDF equipment which includes grounding layout and panel layouts

Question #9:	Does not specify if cables are required to be plenum or riser rated cables.
Answer #9:	Not part of this contract. These cables are owner furnished and owner installed.
Question #10:	Need clarification if customer requires category 6 or 6A cable and preference of colored jacket on cable.
Answer #10:	Not part of this contract. These cables are owner furnished and owner installed.
Question #11:	Are all faceplates to be Stainless Steel due to being in a lab environment?
Answer #11:	Faceplates are to comply with Division 26, Section 262726 Part 2.5

Addendum 2 – Carry Over

Question #14: What electrical systems need to b certified? **Answer #14:** This project does not require electrical systems certification.

Question #27: There is a drawing in between LP3.10 and LP3.12 with no page number or information. What is this sheet for? Is it supposed to be LP3.11? **Answer #27:** Refer to the attached BWS Addendum 3

Question #28: Are any luminaires to be controlled by nLIGHT system. Sheet 3.3 has a schematic drawing for an nLIGHT system, but the Lighting Fixture Schedule does not specify any luminaires with nLIGHT control.

Answer #28: Lighting controls are nLight or equivalent.

Question #29: Are wall switches to be conventional line voltage, single pole, 3 way, 4 way, utilizing powerpack relays or low voltage control, dimming, 3 way, 4 way? **Answer #29:** Refer to symbols on sheet E0.1

Question #30: Should Panel 1LP1 have a 200 amp main breaker? I see that all the other panels that are fed from switch gear have main breakers rated the same as the breaker feeding it. **Answer #30:** The 150 amp breaker called out on the 1LP1 panel is correct as dawn.

Question #32: Refer to Drawings / Specification Reference: Drawings - Plumbing Demolition Plans P1.1.1, P1.1.2, P1.2.1,P1.2.2, Keynote 2. Question: Any lab equipment that requires a backflow preventer is expected to be identified on the bid /contract documents; this is not indicated in the drawings or specs.

Answer #32: The plumbing demolition drawings referenced, keynote 2 call for 'remove all existing s back to 4" s main'. This is correct. Rest of the question, see question 35

Question #33: Refer to Drawings – Lab Plumbing Details LP3.11. Something seems to have gone offtrack with this drawing. There is no biddable, buildable information, no title block, date, AE seal, notes or scale, etc. It may be an early SD phase 'sketch' and not the intent for this drawing to be issued like this for bidding and construction. There are many other drawings and notes referencing this drawing and specific details. It is key for this PCC labs project. Please take a look at drawing LP3.11, correct and reissue this sheet ASAP.

Answer #33: Refer to the attached BWS Addendum 3

Question #35: Any lab equipment that requires a backflow preventer is expected to be identified on the bid /contract documents; this is not indicated in the drawings or specs. **Answer #35:** See Sheet P2.2.3 KN#4. PIMA COMMUNITY COLLEGE WEST CAMPUS SCIENCE LABS CONSTRUCTION DOCUMENTS

Prepared by: BWS Architects 261 N. Court Ave. Tucson, Arizona 85701

Project: Pima Community College WEST CAMPUS LAB BUILDING F RENOVATION

Fin Shantoner ROBIN A SHAMBACH

BWS 1931.000

EXPIRES 06/30/2022

ADDENDUM NO. 3 February 24, 2021

All requirements contained in the Contract Documents dated December January 8, 2020 shall apply to this Addendum, and the general character of the Work called for in this Addendum shall be the same as originally set forth in the applicable portions of the Contract Documents for similar Work, unless otherwise specified under this Addendum, and all incidental Work necessitated by this Addendum as required to complete the Work shall be included in the bids, even though not particularly mentioned in this Addendum.

This Addendum is hereby made a part of the Contract Documents. Acknowledge receipt of this Addendum in the space provided on the proposal form. Failure to do so may subject bidder to disqualification.

ITEMS FROM PREVIOUS ADDENDA:

1. None

DRAWINGS RE-ISSUED WITH THIS ADDENDUM:

Mechanica	I drawings issued for changes in equipment, ductwork, air flows, and
	other miscellaneous items:
M1.0	MECHANICAL GENERAL NOTES AND LEGEND
M2.1.1	MECHANICAL PLAN – LEVEL 1 AREA A
M2.1.2	MECHANICAL PLAN – LEVEL 1 AREA B
M2.2.1	MECHANICAL PLAN – LEVEL 2 AREA A
M2.2.2	MECHANICAL PLAN - LEVEL 2 AREA B
M6.1	MECHANICAL SCHEDULES

PIMA COMMUNITY COLLEGE WEST CAMPUS SCIENCE LABS CONSTRUCTION DOCUMENTS

Electrical drawings provided for changes in equipment and other miscellaneous items:

- E2.20 ELECTRICAL SECOND FLOOR POWER PLAN
- E5.0 ELECTRICAL PANEL SCHEDULES
- E6.0 ONE-LINE DIAGRAM

LP3.11 LAB PLUMBING DETAILS

SPECIFICATIONS RE - ISSUED WITH THIS ADDENDUM:

- 1. 233600 AIR TERMINAL UNITS
- 2. 233713 DIFFUSERS, REGISTERS, & GRILLES
- 3. 237313 AIR HANDLING UNITS

GENERAL ITEMS:

Questions and Answers:

Question #39: On the room finish schedule you have Armstrong Cirrus High NRC but do not have a number or grid type listed. When looking at that specific tile we found that there are various numbers associated with that tile name, for example NRC 556 or NRC 558. Please provide a specification for exact tile as well as grid dimension (15/16 or 9/16).

Answer #39: Ceiling tile to be Armstrong 574 or equal. Grid dimension to be as per section 095133.

SPECIFICATION ITEMS:

1. None

END OF ADDENDUM NO. 3

OUTDOOR AI	JUTDOOR AIR CALCULATION												
BUILDING	ROOM	ROOM NAME	ZONE	CODE	OCCUPANCY CATEGORY,	ZONE	ZONE AIR	ZONE SUPPLY	SYSTEM	OUTDOOR	REQUIRED	ZONE MIN.	ZONE MAX
UNIT	NUM.		FLOOR		Ra, Rp	POPULATION	DISTRIBUTION	AIR FLOW	POPULATION	AIR INTAKE	EXHAUST	EXHAUST	EXHAUST
			AREA, Az			Pz	EFFECTIVENESS, Ez	Vpz	Ps	Vot	VENTILATION	AIR FLOW	AIR FLOW
			(SQ.FT.)					(CFM)		(CFM)	(CFM)	(CFM)	(CFM)
									<u></u>				
AHU-1.1	101	ORGANIC CHEMISTRY LAB	1,668	22	SCIENCE LABORATORIES	41.7		<u>∕3</u> } ₹ 7,100	5		1,668	2,760	7,460
	102	ORGANIC CHEMISTRY LAB	1,634	22	SCIENCE LABORATORIES	40.9		(7,100	<u>}</u>		1,634	2,760	7,460
	103	INSTRUMENTATION	326	22	SCIENCE LABORATORIES	8.2		700			326	340	340
	104	PREPARATION ROOM	856	22	SCIENCE LABORATORIES	21.4		1,700	2		856	920	920
			4,484			112.1	CSCR	3 ₹ 16,600	3 112	2,280	4,484	6,780	16,180
AHU-1.2	110	MICROBIOLOGY LAB	1,560	22	SCIENCE LABORATORIES	39.0		3,200			1,560	1,600	1,600
	111	MICROBIOLOGY LAB	1,574	22	SCIENCE LABORATORIES	39.4		3,200			1,574	1,600	1,600
	112	MICROBIOLOGY PREP	1,051	22	SCIENCE LABORATORIES	26.3		2,200			1,051	1,100	1,100
	113	AUTOCLAVE ROOM	159	22	SCIENCE LABORATORIES	4.0		3 750	}		159	200	850
	114	CLEAN SPACE	172	50	STORAGE ROOMS	0.3		550			0	0	0
			4,516			108.9	CSCR	3 { 9,900	3 109	2,031	4,344	4,500	5,150
AHU-2.1	201	GENERAL CHEMISIRY	1,550	22	SCIENCE LABORATORIES	38.8		3,120			1,550	1,600	2,220
	202	GENERAL CHEMISTRY	1,551	22	SCIENCE LABORATORIES	38.8		3,120			1,551	1,600	2,220
	203	GENERAL CHEMISTRY	1,556	22	SCIENCE LABORATORIES	38.9		3,120			1,556	1,600	2,220
	204	GENERAL CHEMISTRY	1,551	22	SCIENCE LABORATORIES	38.8		3,120			1,551	1,600	2,220
	205	PREPARATION ROOM	1,783	22	SCIENCE LABORATORIES	44.6		3,600			1,783	1,860	3,480
	206	CHEMICAL STORAGE	494	113	STORAGE ROOM, CHEMICAL	0.0		580			371	600	600
	207	LAB WASTE	154	113	STORAGE ROOM, CHEMICAL	0.0		120			116	240	240
	208	ALCOVE	100	50	STORAGE ROOMS	0.2		80			0	0	0
	209	OPEN OFFICE	137	51	OFFICE SPACE	0.7		140			0	0	0
			8,876			200.7	CSCR	17,000	201	3,694	8,477	9,100	13,200

MECHANICAL LEGEND

E MAX	
UST	
FLOW	
)	
7,460	
7,460	
340	
920	
6,180	
1,600	
1,600	
1,100	
850	
0	
5,150	
2,220	
2,220	
2,220	
2,220	
3,480	
600	
240	
0	
0	

DESCRIPTION	SYMBOL
EXISTING - SHOWN IN LIGHTWEIGHT PEN	
DEMOLISH - SHOWN IN DASHED PEN	上 — — →
LINED DUCTWORK (UNLESS NOTED OTHERWISE)	
RECTANGULAR BRANCH TAKE-OFF WITH 45° TAP	
RECTANGULAR ELBOW WITH TURNING VANES	
RECTANGULAR 90° ELBOW DOWN / UP - SUPPLY	
RECTANGULAR 90° ELBOW DOWN / UP - RETURN	
RECTANGULAR 90° ELBOW DOWN / UP - EXHAUST	
RECTANGULAR DUCT RISER - SUPPLY / RETURN / EXHAUST	\boxtimes \boxtimes \boxtimes
ROUND BRANCH TAKE-OFF WITH CONICAL TAP	
ROUND ELBOW	
ROUND 90° ELBOW DOWN / UP - SUPPLY	
ROUND 90° ELBOW DOWN / UP - RETURN	
ROUND 90° ELBOW DOWN / UP - EXHAUST	
ROUND DUCT RISER - SUPPLY / RETURN / EXHAUST	$\otimes \otimes \otimes$
MANUAL BALANCING DAMPER	₹ <u></u> ∎ <u></u>
FIRE DAMPER	
SMOKE DAMPER	
FIRE SMOKE DAMPER	₽ III FSD
DUCT SMOKE DETECTOR	
SPIN IN COLLAR WITH BALANCING DAMPER	
ROUND FLEXIBLE DUCT	
SUPPLY AIR DEVICE	OR 🗙
RETURN AIR DEVICE	OR N
RETURN AIR DEVICE WITH PLENUM BOOT	
EXHAUST AIR DEVICE	OR 📐
WALL GRILLE - ARROW INDICATES AIRFLOW	ов
CEILING EXHAUST FAN	
ROOFTOP CURB MOUNTED EXHAUST FAN	
THERMOSTAT	(T)
DUCT SMOKE DETECTOR	SD

MECHANICAL GENERAL NOTES

- 1. COORDINATE ALL MECHANICAL WORK WITH ALL OTHER TRADES. VERIFY ALL E BEFORE THE START OF WORK. PROVIDE ALL REQUIRED DEMOLITION OF EXISTING MECHANICAL EQUIPMENT, MATERIALS AND OTHER 2.
- ITEMS WHICH ARE NOT TO BE REUSED IN NEW DESIGN. ALL ITEMS WHICH THE OWNER DOES NOT WISH TO SALVAGE SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED FROM THE SITE.
- TRANSITION ALL SUPPLY, RETURN, OUTSIDE AIR AND EXHAUST DUCTWORK FROM AIR HANDLING 3. UNITS AND EXHAUST FANS TO DUCT THROUGH ROOF (DTR) OR DUCT THROUGH FLOOR SIZE. COORDINATE EXACT LOCATIONS WITH ROOF AND FLOOR STRUCTURAL SYSTEM. VERIFY ADEQUACY OF STRUCTURE TO SUPPORT MECHANICAL EQUIPMENT WITH ARCHITECT PRIOR TO INSTALLATION.
- DIMENSIONS ON DRAWINGS ARE SHEET METAL DUCT SIZES. INSULATE DUCTWORK PER 4. SPECIFICATIONS.
- 5. ALL RECTANGULAR DUCT ELBOWS SHALL BE MITERED WITH SINGLE THICKNESS TURNING VANES UNLESS INSTRUCTED OTHERWISE ON DRAWINGS. PROVIDE 45 DEGREE ENTRY FITTINGS AT BRANCH DUCT CONNECTIONS TO DUCT MAINS. FLEXIBLE DUCTS SHALL BE INSTALLED TO MAINTAIN FULL CROSS-SECTIONAL FREE AREA. PROVIDE RIGID SHEET METAL ELBOWS OR LINED PLENUM BOXES AT AIR DEVICES WHEN REQUIRED.
- COORDINATE EXACT LOCATION OF ALL AIR DEVICES WITH ARCHITECTURAL REFLECTED CEILING 6. PLAN.
- 7. OFFSET EXHAUST DISCHARGE AS REQUIRED INSURING A MINIMUM 25'-0" CLEARANCE FROM ALL OUTSIDE AIR INTAKES. 8. ALL LOW VOLTAGE CONTROL WIRING AND ITS INSTALLATION TO BE BY MECHANICAL CONTRACTOR.INSTALL PER ELECTRICAL SPECIFICATIONS. MOUNTING HEIGHT OF THERMOSTATS
- SHALL BE PER ADA REQUIREMENTS. PROVIDE SMOKE DETECTOR IN RETURN AIR SYSTEM(S) MOVING MORE THAN 2000 CFM AS INDICATED 9. ON DRAWINGS. RETURN AIR PLENUMS MOVING MORE THAN 2000 CFM REQUIRE A RETURN DUCT SMOKE DETECTOR AT EACH UNIT. SMOKE DETECTORS SHALL DISENGAGE FAN(S) WHEN ACTIVATED. SMOKE DETECTORS INSTALLED IN THE RETURN AIR DUCT(S) MUST BE LOCATED AHEAD OF ANY OUTSIDE AIR INLET.
- 10. MECHANICAL CONTRACTOR SHALL REVIEW ALL ELECTRICAL DRAWINGS BEFORE PURCHASING EQUIPMENT TO INSURE THAT PROPER ELECTRICAL SERVICE IS TO BE PROVIDED FOR ALL NEW EQUIPMENT.

MECHANICAL PIPING LEGEND

DESCRIPTION	SYMBOL
ELBOW DOWN	+ə
ELBOW UP	——ю
TEE DOWN	
TEE UP	
SHUT OFF VALVE - BALL VALVE	<u> ю </u> ю
SHUT OFF VALVE - GATE VALVE	×
UNION	
ARROW INDICATES DIRECTION OF FLOW	

MECHANICAL ABBREVIATIONS

ABV	ABOVE	EA	EXHAUST AIR
AFF	ABOVE FINISH FLOOR	HWS	HEATING WATER SUPPLY
A.D.	ACCESS DOOR	HWR	HEATING WATER RETURN
CD	CONDENSATE	MUW	MAKE-UP WATER
CHWS	CHILLED WATER SUPPLY	OA	OUTSIDE AIR
CHWR	CHILLED WATER RETURN	OH	OVERHEAD
CLG	CEILING	RA	RETURN AIR
CONT	CONTINUATION	SA	SUPPLY AIR
CWS	CONDENSER WATER SUPPLY	SOV	SHUT OFF VALVE
CWR	CONDENSER WATER RETURN	ТҮР	TYPICAL
DN	DOWN	U.N.O.	UNLESS NOTED OTHERWISE
DTR	DUCT THRU ROOF	UG	UNDERGROUND
E	EXISTING	VTR	VENT THRU ROOF

MECHANICAL PIPING GENERAL NOTES

- PROVIDE HIGH CAPACITY AUTOMATIC AIR VENTS AT ALL HIGH POINTS IN PIPING WITHIN MECHANICAL ROOMS OR EXTERIOR TO BUILDING PER PCC MDSS STANDARD DETAIL. PROVIDE MANUAL AIR VENTS AT ALL OTHER HIGH POINTS IN PIPING.
- PROVIDE MANUAL DRAINS AT ALL LOW POINTS IN PIPING. 2. SEAL ALL ROOF OR WALL PIPING PENETRATIONS WEATHER TIGHT.
- INSULATE ALL PIPING PER SPECIFICATIONS. PROVIDE AN ALUMINUM JACKET FOR ALL EXTERIOR PIPING PER SPECIFICATIONS. 5. LABEL ALL PIPING PER SPECIFICATIONS. INCLUDE ARROW INDICATING DIRECTION OF FLOW.

BASE BID & ALTERNATES DESCRIPTION

BASE BID: • GENERAL CHEMISTRY AND ASSOCIATED SYSTEMS. • SECOND FLOOR ENCLOSURES FOR MECHANIAL ROOMS.

ADD ALTERNATE #01 • MICROBIOLOGY AND ASSOCIATED SYSTEMS.

ADD ALTERNATE #02 ORGANIC CHEMISTRY AND ASSOCIATED SYSTEMS.

EXISTING CONDITIONS	
---------------------	--

 \triangleleft C 0 22 Tuc

DRAWN BY: TCB **JOB NO:** 1931.000 DATE: 01/08/2020 REVISIONS <u>∕</u>3 ADD#3

02/24/2021

M1.0 **100% CONSTRUCTION DOCUMENTS**

ADD ALTERATE #01

MECHANICAL KEYNOTES

- 1. 36"x24" SUPPLY MAIN UP THRU LEVEL 2 FLOOR TO UNIT INLET. PROVIDE FLEXIBLE DUCT CONNECTION AT UNIT. 2. 36"x18" RETURN MAIN UP THRU LEVEL 2 FLOOR TO UNIT INLET. PROVIDE FLEXIBLE DUCT CONNECTION AT UNIT.
- 3. 20"Ø EXHAUST DUCT UP THRU LEVEL 2 FLOOR, SEE M2.2.1 FOR CONTINUATION. 4. 13"Ø EXHAUST DUCT UP THRU LEVEL 2 FLOOR, SEE M2.2.1 FOR CONTINUATION. 5. 10"Ø EXHAUST DUCT UP THRU LEVEL 2 FLOOR, SEE M2.2.1 FOR CONTINUATION.
- 6. 12"Ø EXHAUST DUCT DOWN TO 6' ACFH CHEMICAL FUME HOOD, REFER TO LABORATORY FURNISHINGS DRAWINGS.
- 7. 10"Ø EXHAUST DUCT DOWN TO 4' ACFH CHEMICAL FUME HOOD, REFER TO LABORATORY FURNISHINGS DRAWINGS. 8. SUPPLY DUCT STATIC PRESSURE SENSOR FOR AHU-1.2

- (NOTE: THE AIRFLOWS SHOWN ON THIS PLAN FOR CEILING SUPPLY, RETURN AND EXHAUST AIR DEVICES ARE WITH ALL LAB HOODS AT THEIR MINIMUM AIRFLOW (CLOSED SASH POSITION) AND SUPPLY AIR DEVICES AT \langle MAXIMUM AIRFLOW. REFER TO THE SUPPLY, RETURN AND EXHAUST VALVE SCHEDULES AND CONTROL \langle SEQUENCE OF OPERATION.

ഗ $\overline{\triangleleft}$ S.

MECHANICAL PLAN - LEVEL 1 AREA A

100% CONSTRUCTION DOCUMENTS

M2.1.1

ADD ALTERATE #02

MECHANICAL KEYNOTES

1.	26"x24" SUPPLY UP THRU FLOOP TO LEVEL 2, SEE M2,2.2 FOR CONTINUATION.
2.	(TRĂNSITION TO 28"x28" WITH (2) 28"x14" MITERED ELBOWS.)
3.	16"Ø SUPPLY UP THRU FLOOR TO LEVEL 2, SEE M2.2.2 FOR CONTINUATION.
4.	16"x14" RETURN WITH 1" LINER UP, TRANSITION TO 18"x16" WITH 2" LINER THRU FLOO
5.	20"Ø EXHAUST DUCT UP THRU LEVEL 2 FLOOR, SEE M2.2.2 FOR CONTINUATION.
6.	18"Ø EXHAUST DUCT UP THRU LEVEL 2 FLOOR, SEE M2.2.2 FOR CONTINUATION.
7.	12"Ø EXHAUST DUCT UP THRU LEVEL 2 FLOOR, SEE M2.2.2 FOR CONTINUATION.
8.	12"Ø EXHAUST DUCT DOWN TO 6' AFVH CHEMICAL FUME HOOD, REFER TO LABORATO
	FURNISHINGS DRAWINGS.
9.	12"Ø EXHAUST DUCT DOWN TO 6' FVH CHEMICAL FUME HOOD, REFER TO LABORATOF
	DRAWINGS.
10.	10"Ø EXHAUST DUCT DOWN TO 4'CFH CHEMICAL FUME HOOD, REFER TO LABORATOR
	DRAWINGS.
11.	6"Ø DOWN IN WALL CHASE TO BASE CABINET CHASE. 6"Ø IN BASE CABINET CHASE TO
	PUMP CABINET EXHAUST CONNECTION, REFER TO LABORATORY FURNISHINGS DETAIL

- 100 CFM. 12. 6"Ø MANUAL DAMPER, 6"Ø REDUCE TO 4"Ø EXHAUST SNORKEL CONNECTION, REFER LABORATORY FURNISHINGS DETAIL. BALANCE TO 60 CFM.
- 13. 2"Ø SCHEDULE 80 PVC/CPVC EXHAUST DUCT DOWN TO TALL CORROSIVE STORAGE TO LABORATORY FURNISHINGS DRAWINGS.
- 14. PROVIDE DRYER WALL BOX WITH 4"Ø DRYER VENT. 15. 4"Ø DRYER VENT UP IN WALL AND UP THRU LEVEL 2 FLOOR, SEE M2.2.2 FOR CONTINU.
- 16. 1"Ø VENT UP FROM PRESSURE RELIEF VALVE TO ABOVE CEILING. 17. 1"Ø VENT UP IN WALL AND UP THRU LEVEL 2 FLOOR, SEE M2.2.2 FOR CONTINUATION. 18. SUPPLY DUCT STATIC PRESSURE SENSOR FOR AHU-1.1

 ζ organic chemistry laboratory 101 & 102 - Airflows shown on this plan for ceiling C DEVICES ARE WITH ALL LAB HOODS AT THEIR DESIGN AIRFLOW (OPEN SASH POSITION) AND SUPPLY AIR \sim devices at maximum airflow. Refer to the supply and exhaust valve schedules and control \sim \geq SEQUENCE OF OPERATION.

PREPARATION ROOM 104 - AIRFLOWS SHOWN ON THIS PLAN FOR CEILING SUPPLY, RETURN AND EXHAUST lash air devices are with the LAB hood at minimum airflow (closed Sash Position) and supply air $rac{1}{2}$ EVICES AT MAXIMUM AIRFLOW. REFER TO THE SUPPLY, RETURN AND EXHAUST VALVE SCHEDULES AND CONTROL SEQUENCE OF OPERATION.

		ARCHITECTS
OR TO LEVEL 2.	(0	ABACH
ORY	D L O	HAN
ORY FURNISHINGS	Ш	S S
RY FURNISHINGS	Ц Ц	NN
TO VACUUM AIL. BALANCE TO	ARC	-HOF
RTO		ALD Iue 20.795.
CABINET, REFER	/S	VS W Court Aver rizona 857(705 Fax 5 archs.com
UATION.	5	URL 1 North 1 North 1 North 1 Cort 20.795.2 ww.bwsa
l.		25 Δ Β
~~~~~}		



REVISIONS ⚠ ADD#1 3 ADD#3

02/12/2021 02/24/2021

**MECHANICAL PLAN - LEVEL** 1 AREA B







# MECHANICAL KEYNOTES

	1.	36"x36" SUPPLY UP FROM UNIT. PROVIDE FLEXIBLE DUCT CONNECTION AT UNI
	2.	28"x24" RETURN UP FROM UNIT. PROVIDE FLEXIBLE DUCT CONNECTION AT UNI
	3.	36"x24" SUPPLY DOWN FROM UNIT AND THRU FLOOR TO LEVEL 1. PROVIDE FLE
	4.	36"x18" RETURN DOWN FROM UNIT AND THRU FLOOR TO LEVEL 1. PROVIDE FLI CONNECTION AT UNIT.
	5.	20"Ø EXHAUST DUCT UP THRU FLOOR FROM LEVEL 1, SEE M2.1.1 FOR CONTINU
	6.	13"Ø EXHAUST DUCT UP THRU FLOOR FROM LEVEL 1, SEE M2.1.1 FOR CONTINU
	7.	12"Ø EXHAUST DUCT UP THRU FLOOR FROM LEVEL 1, SEE M2.1.1 FOR CONTINU
	8.	24"Ø EXHAUST DUCT THRU ROOF, SEE M2.3.1 FO CONTINUATION.
<u>1</u> -	9.	ACOUSTIC WALL LOUVERS FOR OUTSIDE AIR INTAKE, REFER TO LOUVER SCHE BOTTOM OF LOUVER AT 12'-0" ABOVE FINISHED FLOOR. SEE ARCHITECTURAL I
	10.	12"Ø EXHAUST DUCT DOWN TO 6' ACFH CHEMICAL FUME HOOD, REFER TO LAB FURNISHINGS DRAWINGS.
	11.	10"Ø EXHAUST DUCT DOWN TO 4' ACFH CHEMICAL FUME HOOD, REFER TO LAB FURNISHINGS DRAWINGS.
	12.	12"Ø EXHAUST DUCT DOWN TO 6' CFH CHEMICAL FUME HOOD, REFER TO LABO DRAWINGS.
	13.	2"Ø EXHAUST DUCT DOWN TO VENTED STORAGE CABINET, REFER TO LABORA DRAWINGS.
	14.	6"Ø EXHAUST DUCT DOWN TO TALL GLASSWARE WASHER, REFER TO LABORA DRAWINGS. BALANCE TO 60 CFM.
	15.	SEE M2.2.2 FOR CONTINUATION.
	16.	PROVIDE MINIMUM R8 INSULATION FOR SUPPLY AND RETURN AIR CONDITIONIN MECHANICAL ROOM.
3-(	NOTE: WITH A	THE AIRFLOWS SHOWN ON THIS PLAN FOR CEILING SUPPLY, RETURN AND EXHA ALL LAB HOODS AT THEIR MINIMUM AIRFLOW (CLOSED SASH POSITION) AND SUP IUM AIRFLOW. REFER TO THE SUPPLY. RETURN AND EXHAUST VALVE SCHEDULE

![](_page_8_Picture_5.jpeg)

NIT. NIT. LEXIBLE DUCT		H ARCHITECTS
LEXIBLE DUCT		AC
NUATION. NUATION. NUATION.	OTS	SHAMB
IEDULE. INSTALL _ DRAWINGS. ABORATORY	CHITE(	SNIX
ABORATORY	Ц	101
BORATORY FURNISHINGS	$\triangleleft$	ALD-I ue 20.795.61
ATORY FURNISHINGS		<b>V /</b> Avenu 3570 ⁻ ax 52 Dm
ATORY FURNISHINGS	ΝS	IRNS V Jorth Court / Jon, Arizona 8 95.2705 F bwsarchs.co
ING DUCT IN	<b>_</b>	<b>BU</b> 261 N 261 N 5620.7 www.
TALIST AIR DEVICES ARE		

💫 NOTE: THE AIRFLOWS SHOWN ON THIS PLAN FOR CEILING SUPPLY, RETURN AND EXHAUST AIR DEVICES ARE	: 2
<b>WITH ALL LAB HOODS AT THEIR MINIMUM AIRFLOW (CLOSED SASH POSITION) AND SUPPLY AIR DEVICES AT</b>	- 5
{ MAXIMUM AIRFLOW. REFER TO THE SUPPLY, RETURN AND EXHAUST VALVE SCHEDULES AND CONTROL	3
SEQUENCE OF OPERATION.	3
	مر

![](_page_8_Figure_9.jpeg)

**JOB NO:** 1931.000 DATE: 01/08/2020 REVISIONS ⚠ ADD#1 </ >

 ▲
 ADD#1

 ▲
 ADD#3

02/12/2021 02/24/2021

MECHANICAL PLAN - LEVEL 2 Area a

![](_page_8_Picture_13.jpeg)

M2.2.1 **100% CONSTRUCTION DOCUMENTS** 

![](_page_9_Figure_0.jpeg)

# MECHANICAL KEYNOTES

	1.	26"x26" SUPPLY UP FROM UNIT. PROVIDE FLEXIBLE DUCT CONNECTION AT UNIT
	2.	26"x24" SUPPLY UP FROM UNIT. PROVIDE FLEXIBLE DUCT CONNECTION AT UNIT
	3.	26"x24" SUPPLY DOWN THRU FLOOR TO LEVEL 1, SEE M2.1.2 FOR CONTINUATION
	4.	16"Ø SUPPLY DOWN THRU FLOOR TO LEVEL 1, SEE M2.1.2 FOR CONTINUATION.
	5.	16"x18" RETURN WITH 2" LINER UP FROM UNIT. PROVIDE FLEXIBLE DUCT CONN
	6.	16"x18" RETURN WITH 2" LINER DOWN THRU FLOOR TO LEVEL 1, SEE M2.1.2 FO
	7.	20"Ø EXHAUST DUCT UP THRU FLOOR FROM LEVEL 1, SEE M2.1.2 FOR CONTINU
	8.	18"Ø EXHAUST DUCT UP THRU FLOOR FROM LEVEL 1, SEE M2.1.2 FOR CONTINU
	9.	12"Ø EXHAUST DUCT UP THRU FLOOR FROM LEVEL 1, SEE M2.1.2 FOR CONTINU
	10.	12"Ø EXHAUST DUCT OFFSET AS REQUIRED TO AVOID OTHER DUCTS.
	11.	28"x24" EXHAUST DUCT THRU ROOF, SEE M2.3.2 FOR CONTINUATION.
	12.	12" Ø EXHAUST DUCT THRU ROOF, SEE M2.3.2 FOR CONTINUATION.
	13.	24"Ø EXHAUST DUCT THRU ROOF, SEE M2.3.2 FOR CONTINUATION.
	14.	ACOUSTIC WALL LOUVERS FOR OUTSIDE AIR INTAKE, REFER TO LOUVER SCHE
		BOTTOM OF LOUVER AT 12'-0" ABOVE FINISHED FLOOR. SEE ARCHITECTURAL I
	15.	12"Ø EXHAUST DUCT DOWN TO 6' ACFH CHEMICAL FUME HOOD, REFER TO LAB
		FURNISHINGS DRAWINGS.
	16.	10"Ø EXHAUST DUCT DOWN TO 4' ACFH CHEMICAL FUME HOOD, REFER TO LAB
		FURNISHINGS DRAWINGS.
	17.	12"Ø EXHAUST DUCT DOWN TO 6' CFH CHEMICAL FUME HOOD, REFER TO LABC
	18.	(2) 12"Ø EXHAUST DUCT DOWN TO 8" ACFH CHEMICAL FUME HOOD, REFER TO L
	10	FURNISHINGS DRAWINGS.
	19.	(2) 12" Ø EXHAUST DUCT DOWN TO 8" CFH CHEMICAL FUME HOOD, REFER TO LA
	00	
	20.	4 0 DRYER VENT OF THRU FLOOR FROM LEVEL 1, SEE M2.1.2, AND UP IN WALL
	21.	
	22.	4"Ø DRYER VENT UP THRU ROOF, SEE M2.3.2 FOR CONTINUATION.
	23.	1"Ø VENT UP THRU FLOOR FROM LEVEL 1, SEE M2.1.2, AND UP IN WALL TO ABC
	24.	1"Ø VENT UP THRU ROOF, SEE M2.3.2 FOR CONTINUATION.
	25.	SUPPLY DUCT STATIC PRESSURE SENSOR FOR AHU-2.1
	26.	SEE M2.2.1 FUR CONTINUATION.
	21.	
~	$\sim$	
/\		

![](_page_9_Picture_4.jpeg)

NIT. NIT ION. N. INECTION AT UNIT. OR CONTINUATION. NUATION. NUATION. NUATION. HEDULE. INSTALL L DRAWINGS. ABORATORY	ARCHITECTS	0-HOPKINS SHAMBACH ARCHITECTS
ABORATORY		<b>VAL</b> enue 701 (520.79
BORATORY FURNISHINGS	S	Sourt Av Sourt Av 20na 85 58 05 Fax chs.corr
) LABORATORY	3	JRN North C son, Ari: 795.27 v.bwsaru
	<b>_</b>	<b>B</b> ( 261 520 wwv

ALL TO ABOVE CEILING.

ABOVE CEILING.

IING DUCT IN

$\wedge$	
	lash Note: The Airflows shown on this plan for ceiling supply, return and exhaust air devices are $j$
(	$\langle$ with All Lab Hoods at their minimum airflow (closed sash position) and supply air devices at $-$
(	$\zeta$ maximum airflow. Refer to the supply, return and exhaust valve schedules and control $\sim$ $-5$
(	SEQUENCE OF OPERATION.

![](_page_9_Figure_10.jpeg)

DRAWN BY: TCB **JOB NO:** 1931.000 DATE: 01/08/2020 REVISIONS ⚠ ADD#1 </ >

 ▲
 ADD#1

 ▲
 ADD#3

02/12/2021 02/24/2021

MECHANICAL PLAN - LEVEL 2 AREA B

![](_page_9_Picture_14.jpeg)

M2.2.2 **100% CONSTRUCTION DOCUMENTS** 

AIR HANDLER SCHEDULE				
MARK	AHU-1.1	AHU-1.2	AHU-2.1	
ТҮРЕ	INDOOR	INDOOR	INDOOR	
POSITION	HORIZONTAL	HORIZONTAL	HORIZONTAL	
TOTAL SUPPLY AIR (CFM)	3 (16,600	9,900	17,000	
SUPPLY FAN EXTERNAL STATIC PRESSURE (IN. W.G.)	3.5	3.5	3.5	
MINIMUM SUPPLY FAN TOTAL STATIC PRESSURE (IN. W.G.)	5.6	5.6	5.6	
OUTSIDE AIR (CFM)	16,250	5,500	13,200	
MINIMUM PREHEAT CAPACITY (MBH)	750	250	690	
ENTERING AIR TEMPERATURE (°F)	30	49	40	
ENTERING HEATING WATER TEMPERATURE (°F)	160	160	160	
HEATING WATER FLOW RATE (GPM)	40	15	40	
MAXIMUM COIL PRESSURE DROP (FT. W.C.)	15	15	15	
MINIMUM TOTAL COOLING CAPACITY (MBH)	1,300	585	1155	
MINIMUM SENSIBLE COOLING CAPACITY (MBH)	650	335	605	
ENTERING AIR TEMPERATURE (°F DB/WB)	84 /73.5	80/69	82/71.5	
ENTERING CHILLED WATER WATER TEMPERATURE (°F)	45	45	45	
CHILLED WATER FLOW RATE (GPM)	290	120	250	
MAXIMUM COIL PRESSURE DROP (FT. W.C.)	20	20	20	
MAXIMUM COIL VELOCITY (FPM)	500	500	500	
MINIMUM FILTER AREA (SQ.FT.)	36	20	36	
DRIVE TYPE	DIRECT	DIRECT	DIRECT	
SUPPLY FAN MOTOR (QUANTITY / HP)	4 / 6-HP	4 / 3.5-HP	4 / 6-HP	
VOLTS/PHASE/HZ (SUPPLY AND RETURN)	460/3/60	460/3/60	460/3/60	
POWER POINT 1 (SUPPLY FAN) FLA	28	18	28	
POWER POINT 1 (SUPPLY FAN) MCA	29	19	29	
VOLTS/PHASE/HZ (LIGHTS)	115/1/60	115/1/60	115/1/60	
POWER POINT 2 (LIGHTS) - MOCP	15	15	15	
MAXIMUM OPERATING WEIGHT (LBS.)	11,500	8,500	11,500	
REFERENCE	NORTEK	NORTEK	NORTEK	
NOTES	1 THRU 12	1 THRU 13	1 THRU 12	

1. CAPACITY SCHEDULED SHALL BE FOR 2500 FT. ELEVATION.

2. UNIT CONSTRUCTION SHALL BE PER SPECIFICATIONS. 3. PROVIDE STAINLESS STEEL MULTI SLOPED (IAQ) DRAIN PAN PER SPECIFICATIONS.

4. PROVIDE 2" THICK, MERV-8, PLEATED TYPE FILTERS. SEE SPECIFICATIONS. PROVIDE FILTER DIFFERENTIAL PRESSURE GAUGE, FACTORY INSTALLED AND WIRED TO CONTROL PANEL. 5. PROVIDE UNIT MOUNTED VFD(S) PANEL WITH DISCONNECT FOR FAN SYSTEM POWER POINT. PROVIDE HIGH LIMIT DIFFERENTIAL PRESSURE SENSOR WIRED TO DISABLE SUPPLY FANS. 6. ALL FAN SYSTEMS SHALL PROVIDE "N+1" REDUNDANCY AND MAINTAIN A MINIMUM OF 90% DESIGN FLOW AND PRESSURE IN THE EVENT OF A SINGLE MOTOR OR VFD FAILURE.

7. PROVIDE AIR FLOW MEASURING SYSTEM FOR SUPPLY FAN SYSTEM. 8. PROVIDE FULL FACE AVERAGING MIXED AIR AND SUPPLY AIR TEMPERATURE SENSORS. PROVIDE COOLING COIL FREEZE-STAT TO DISABLE SUPPLY FANS AT 40 F; FACTORY INSTALLED.

9. PROVIDE 12" THICK, FINAL FILTER SECTION.

10. PROVIDE VAPOR TIGHT LED LIGHTS IN EACH SECTION, FACTORY INSTALLED AND WIRED TO SWITCH AND JUNCTION BOX. 11. DISCONNECT MEANS FOR LIGHTS POWER POINT BY ELECTRICAL. COORDINATE FINAL CONNECTION.

12. EXERNAL STATIC PRESSURES SCHEDULED INCLUDE A LOADED FILTER ALLOWANCE. 13. PROVIDE AIR FLOW MEASURING SYSTEM FOR OUTSIDE AIR INTAKE.

EXHAUST FAN SCHEDULE

MARK	EF-1.1	EF-1.2	EF-1.3	EF-1.4	EF-2.1, 2	EF-2.3
SERVICE	O. CHEM	O. CHEM, PREP	O. CHEM, PREP	M. BIO	G. CHEM	PREP
BLOWER TYPE	B.I. SCROLL	B.I. SCROLL	B.I. SCROLL	B.I. SCROLL	B.I. SCROLL	B.I. SCROLL
MAXIMUM AIR FLOW (CFM)	7300	8220	660	5150	4440	4320
MINIMUM AIR FLOW (CFM)	2600	3520	660	4500	3200	2700
E.S.P. ("w.g.)	2	2	1.5	2	1.75	1.75
DRIVE TYPE	BELT	BELT	BELT	BELT	BELT	BELT
MAXIMUM FAN SPEED (RPM)	1200	1200	1200	1400	1400	1400
MAXIMUM SONES – INLET	25	25	12	22	20	20
MOTOR HP	5	7-1/2	1/2	5	3	3
VOLTS/PHASE/HZ	460/3/60	460/3/60	460/3/60	460/3/60	460/3/60	460/3/60
MAXIMUM OPERATING WEIGHT (LBS.)	2200	2200	300	1400	1400	1400
REFERENCE	GREENHECK	GREENHECK	GREENHECK	GREENHECK	GREENHECK	GREENHECK
	VK-CH-24-19	VK-CH-27-21	USF-10-B2	VK-CH-22-18	VK-CH-22-16	VK-CH-22-16
NOTES	1 THRU 10	1 THRU 10	1 THRU 6, 9, 10, 11	1 THRU 10	1 THRU 10	1 THRU 10
1. SCHEDULE CAPACITY SHALL BE FOR 2500 FT. ELEVATION.						

2. FAN PERFORMANCE SHALL BE AMCA CERTIFIED.

3. DISCONECT MEANS PROVIDED BY ELECTRICAL.

4. PROVIDE FACTORY SUPPLIED ROOFCURB, BIRDSCREEN & BACKDRAFT DAMPER.

5. PROVIDE WEATHERHOOD, SCROLL DRAIN AND BOLTED ACCESS DOOR.

6. PROVIDE 2" DEFLECTION, HOUSED SPRING ISOLATORS UNDER FAN.

7. PROVIDE INLET PLENUM WITY BYPASS DAMPER AND INTAKE HOOD. PROVIDE FAN CONTROLLER WITH AIRFLOW MONITOR, DUCT STATIC PRESSURE SENSOR, BY-PASS DAMPER ACTUATOR AND BACNET COMMUNICATION. SEE CONTROLS.

8. PROVIDE INTEGRAL, HIGH-PLUME DISCHARGE DUCT STACK.

9. PROVIDE PREMIUM EFFICIENCY, VFD RATED FAN MOTOR. PROVIDE VFD RATED FOR MOTOR HP, COORDINATE INSTALL WITH ELECTRICAL

10. SEE CONTROLS FOR FAN CONTROL. 11. PROVIDE HIGH-PLUME DISCHARGE DUCT STACK.

EXHAUST VENTURI VALVE SCHED	ule – level í	1														
MARK		EV-1.1	EV-1.2 TO 1.8	EV-1.9	EV-1.10	EV-1.11 TO 1	.17 EV-1.18	EV-1.19	EV-1.20	EV-1.21	EV-1.22	EV-1.23	EV-1.24	EV-1.25	EV-1.26	EV-1.27
SERVICE		6'AFVH	6'FVH	4'CFH	6'AFVH	6'FVH	4'CFH	6' ACFH	CEILING	6'ACFH	CEILING	6' ACFH	CEILING	4' ACFH	CEILING	CEILING
ROOM NO.		101	101	101	102	102	102	104	104	110	110	111	111	112	112	113
DESIGN AIR FLOW (CFM)		850	850	500	850	850	500	800	620	800	1300	800	1300	500	900	850
MINIMUM AIR FLOW (CFM)		300	300	200	300	300	200	300	120	300	800	300	800	200	600	200
MAXIMUM PRESSURE DROP	^	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SIZE (IN Ø)	<u>/3</u> {{	{ 10	10	8	10	10	8	10	8	10	12	10	12	8	10	10 }
CONTROLS		DDC												DDC		
MANUFACTURER	3-{	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX
MODEL NO./INLET SIZE		EXVB 110	EXVB 110	EXVB 108	EXVB 110	EXVB 110	EXVB 108	EXVB 110	EXVA 108	EXVB 110	EXVA 112	EXVB 110	EXVA 112	EXVB 108	EXVA 110	EXVA 110
NOTES		1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 3	1 THRU 3						

EXHAUST VENTURI VALVE SCHE	DULE – LEVEL 2																			
MARK	EV-2.1	EV-2.2	EV-2.3	EV-2.4	EV-2.5	EV-2.6	EV-2.7	EV-2.8	EV-2.9	EV-2.10	EV-2.11	EV-2.12	EV-2.13	EV-2.14	EV-2.15	EV-2.16	EV-2.17	EV-2.18, 2.19	EV-2.20	EV-2.21
SERVICE	6'CFH	4' ACFH	6'ACFH	CEILING	6'ACFH	4' ACFH	6'CFH	CEILING	6'CFH	4' ACFH	6'ACFH	CEILING	6'ACFH	4' ACFH	6'CFH	CEILING	8' ACFH	8'CFH	CEILING	CEILING
ROOM NO.	201	201	201	201	202	202	202	202	203	203	203	203	204	204	204	204	205	205	205	206, 207
DESIGN AIR FLOW (CFM)	800	500	800	800	800	500	800	800	800	500	800	800	800	500	800	800	1100	1100 🖉	<u> </u>	900
MINIMUM AIR FLOW (CFM)	300	200	300	120	300	200	300	120	300	200	300	120	300	200	300	120	400	400	{ 180 }	900
MAXIMUM PRESSURE DROP	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SIZE (IN Ø)	3 (10	8	10 }	10 🯒	3 ( 10	8	10 3	10 🧷	<u>3</u> _{10		10 }	10 🗸	3-(10	8	10 }	10 _	3-{12	12	12 X 2	10 }
CONTROLS																DDC				
MANUFACTURER	3 PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX }
MODEL NO.	EXVB110	EXVB108	EXVB110	EXVA110	EXVB110	EXVB108	EXVB110	EXVA110	EXVB110	EXVB108	EXVB110	EXVA110	EXVB110	EXVB108	EXVB110	EXVA110	EXVB 112	EXVB 112	EXVA 212	EXVB110 <
NOTES	<pre>{ 1 THRU 4</pre>	1 THRU 4	1 THRU 4	1 THRU 3	1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 3	1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 3	1 THRU 4	1 THRU 4	1 THRU 4	1 THRU 3	1 THRU 4	1 THRU 4	1 THRU 3	1 THRU 3

EXHAUST VENTURI VALVE SCHEDULE NOTES 1. VENTURI VALVE & ASSOCIATED CONTROLS SHALL BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. 2. VENTURI VALVE SHALL FAIL IN THE LAST POSITION.

3. PROVIDE PRESSURE SENSORS, DAMPER, HIGH SPEED ACTUATOR & CONTROL ENCLOSURE.

4. PROVIDE PHENOLIC COATING. }

MAXIMUM_AIR_FLOW (CFM)		700	1.700	3,200	3	3,200	2,200 3	$\overline{50}$	550	3 26,50
MINIMUM AIR FLOW (CFM)	{1,200		3 950	1,700	_ <del>, , , , , , , , , , , , ,</del> 1	1,700	1,100	<u>{</u> 100 {	100	( 10,85
EATING AIR FLOW (CFM)	\$ 1,200	\$ 400	> 950	1,700	1	1,700 {	1,100	\$ 300 \$	200	11,15
eheat capacity (mbh)	<u>}</u> 42	3 14		60	6	50 <u>{</u>	39	E 11 E	8	394
EHEAT WATER FLOW (GPM)	4.5	<u> </u>	(3.5	<u> </u>	<u></u>	in a start	4	{ 1.5	1	41.5
INIMUM OPERATING STATIC PRESSURE	0.5	0.5	0.5	0.5	0	0.5	0.5	0.5	0.5	
ONTROLS	DDC	DDC	DDC	DDC	D		DDC	DDC	DDC	
ANUFACTURER 🖉	3 PHOENIX	<pre> KRUEGER</pre>	3 PHOENIX	PHOENI	X P	PHOENIX	PHOENIX	PHOENIX	} KRUEGER	
ODEL NO./INLET SIZE	AMAVA 214	LMHS / 8	> MAVA 114	MAVA 2	214 N	MAVA 214	MAVA 114	MAVA 110	{ LMHS / 8	
OTES	(1 - 3, 5 - 7	7 1 - 6	(1 - 3, 5	- 7 1 - 3	5 - 7 1	1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 -	7 3 1 - 6	
<u>erminal unit schedule – level 2 – .</u> Ark	AHU-2.1	TU-2.2	TU-2.3		T		TU-2.5B	TU-2.7	TU-2.8	
AXIMUM AIR FLOW (CEM)	3 120	3 120	3 120	.3 120	2	2 020	1 800	120	580	17.00
INIMUM AIR FLOW (CFM)	1,600	1,600	1,600	1,600	9	900	900	100	400	8.700
FATING AIR FLOW (CFM)	1.600	1.600	1.600	1.600	<del>،</del>		900	120	3 400	8.720
THEAT CAPACITY (MRH)	<u> </u>	64	64	64	3	36	36	5	( 16	349
EHEAT WATER FLOW (GPM)	6.5	6.5	6.5	6.5	3	4	4	0.5	<del>\`````````````````````````````````</del>	
INIMUM OPERATING STATIC PRESSURE	0.5	0.5	0.5		<del>Jurun</del> N	).5	0.5	0.5	0.5	
ONTROLS	DDC	DDC	DDC			DDC .		DDC	DDC	
ANUFACTURER	PHOFNIX	PHOFNIX	PHOFNIX	PHOFNI	<del>у р</del>	PHOENIX	PHOENIX	KRUFGFR	KRUFGFR	
ODEL NO./INLET SIZE	E MAVA214	MAVA214	MAVA214	MAVA2	4 M	MAVA114	MAVA114	LMHS / 6	LMHS / 8	
OTES	(1 - 3 5 - 7)	7 1 - 3 5 -	7 1 - 3 5	- 7 1 - 3	5 - 7 1	1 - 3. 5 - 7	1 - 3. 5 - 7	)	1 THRII 6	
			in the second		<u>hini hini</u>			<u>, i i i i i i i i i i i i i i i i i i i</u>		
PROVIDE PRESSURE SENSORS, DAMPER,	, HIGH SPEED ACTUAT	OR & CONTROL ENCLO	OSURE.							
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim \sim $		$\sim$	
TURN VENTURI VALVE SCHEDULE - LEV	/FI 1 & 2	· · · · · · · · ·								
ETURN VENTURI VALVE SCHEDULE – LEV ARK	<u>/EL 1 & 2</u> RV-1 1	RV-1 2	RV-1.3	RV-1.4	RV-2 1	RV-2-2	RV-2.3	RV-2 4	{	
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE	/EL 1 & 2 RV-1.1 CFILING	RV-1.2 CFILING	RV-1.3 CEILING	RV-1.4 CEILING	RV-2.1 CEILING	RV-2.2 CEILING	RV-2.3 CFILING	RV-2.4 CEILING		
TURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO.	<u>/EL 1 & 2</u> <u>RV-1.1</u> <u>CEILING</u> 104	RV-1.2 CEILING 110	RV-1.3 CEILING 111	RV-1.4 CEILING 112	RV-2.1 CEILING 201	RV-2.2 CEILING 202	RV-2.3 CEILING 203	RV-2.4 CEILING 204		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM)	<u>/EL 1 & 2</u> <u>RV-1.1</u> <u>CEILING</u> 104 830	RV-1.2 CEILING 110 1700	RV-1.3 CEILING 111 1700	RV-1.4 CEILING 112 1200	RV-2.1 CEILING 201 1620	RV-2.2 CEILING 202 1620	RV-2.3 CEILING 203 1620	RV-2.4 CEILING 204 1620		
ARK IRVICE JOM NO. ISIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM)	<u>/EL 1 & 2</u> <u>RV-1.1</u> <u>CEILING</u> 104 830 80	RV-1.2 CEILING 110 1700 200	RV-1.3 CEILING 111 1700 200	RV-1.4 CEILING 112 1200 100	RV-2.1 CEILING 201 1620 100	RV-2.2 CEILING 202 1620 100	RV-2.3 CEILING 203 1620 100	RV-2.4 CEILING 204 1620 100		
TURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP	<u>/EL 1 & 2</u> <u>RV-1.1</u> <u>CEILING</u> 104 830 80 0.2	RV-1.2 CEILING 110 1700 200 0.2	RV-1.3 CEILING 111 1700 200 0.2	RV-1.4 CEILING 112 1200 100 0.2	RV-2.1 CEILING 201 1620 100 0.2	RV-2.2 CEILING 202 1620 100 0.2	RV-2.3 CEILING 203 1620 100 0.2	RV-2.4 CEILING 204 1620 100 0.2		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 10	RV-1.2 CEILING 110 1700 200 0.2 14	RV-1.3 CEILING 111 1700 200 0.2 14	RV-1.4 CEILING 112 1200 100 0.2 12	RV-2.1 CEILING 201 1620 100 0.2 14	RV-2.2 CEILING 202 1620 100 0.2 14	RV-2.3 CEILING 203 1620 100 0.2 14	RV-2.4 CEILING 204 1620 100 0.2 14		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC	RV-1.2 CEILING 110 1700 200 0.2 14 DDC	RV-1.3 CEILING 111 1700 200 0.2 14 DDC	RV-1.4 CEILING 112 1200 100 0.2 12 DDC	RV-2.1 CEILING 201 1620 100 0.2 14 DDC	RV-2.2 CEILING 202 1620 100 0.2 14 DDC	RV-2.3 CEILING 203 1620 100 0.2 14 DDC	RV-2.4 CEILING 204 1620 100 0.2 14 DDC		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX PHOENIX	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO.	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES (HAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER,	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 ER'S INSTRUCTIONS. OSURE.	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER ODEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS OLS OLS SHALL NGH SPEED ACTUAT CONTRACT	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3		
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER ODEL NO. OTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, M COIL UNIT SCHEDULE (HYDRONIC) ARK	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 ER'S INSTRUCTIONS. OSURE. 	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3		L-2
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER ODEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 ER'S INSTRUCTIONS. OSURE. COSUR COSUR COSURE. COSURE. COSURE. COSURE. COS	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK OUANTITY	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3		<u>L-2</u> 5
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MRH)	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 CS DLS SHALL BE INSTALL ST POSITION. , HIGH SPEED ACTUAT	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKF	L-2 5 AIR INTAKF
CTURN VENTURI VALVE SCHEDULE – LEV ARK CRVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTROL VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MBH)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS OLS DLS SHALL BH) BH	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC	L-2 5 AIR INTAKE ACOUSTIC
CTURN VENTURI VALVE SCHEDULE – LEV ARK CRVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, MN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MEH)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS OLS DLS SHALL BH) BH)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PH0ENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PH0ENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER	L-2 5 AIR INTAKE ACOUSTIC I OLIVER
CTURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MBH)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS OLS DLS SHALL BH) (DEG. F)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 ER'S INSTRUCTIONS. OSURE. FC-2.2 1400 38 35 78/63 45	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MEH)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS OLS DLS SHALL BH) (DEG. F)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STU FINISH	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MEH) NIMUM TOTAL COOLING CAPACITY (MEH)	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 ES OLS DLS SHALL BH) (DEG. F)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PH0ENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MEH) NIMUM COIL PRESSURE DROP (FT.) RIVE TYPE	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 ES OLS DLS SHALL BH) (DEG. F)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES (HAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MEH) NIMUM COIL PRESSURE DROP (FT.) RIVE TYPE N MOTOR HP	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STU FINISH AIRFLOW (CF MAX PRESSU	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7 5	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7 5
CTURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRC VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, ANN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MEH) ITERING AIR TEMPERATURE (DB/WB) ITERING CHILLED WATER TEMPERATURE (HILED WATER FLOW RATE (GPM) AXIMUM COIL PRESSURE DROP (FT.) RIVE TYPE N MOTOR HP DITS / DHASE / H7	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 × 50	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 × 60
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) NIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER DDEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) NIMUM TOTAL COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MBH) NIMUM SENSIBLE COOLING CAPACITY (MEH) NIMUM SENSIBLE COOLING CAPACITY (MEH) NIMUM SENSIBLE COOLING CAPACITY (MEH) NIMUM COIL PRESSURE DROP (FT.) RIVE TYPE NN MOTOR HP DLTS/PHASE/HZ	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS OLS DLS SHALL BH) (DEG. F)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP ZE (IN Ø) DNTROLS ANUFACTURER ODEL NO. DTES KHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, MN COIL UNIT SCHEDULE (HYDRONIC) ARK JPPLY AIR (CFM) INIMUM TOTAL COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM COIL PRESSURE DROP (FT.) RIVE TYPE AN MOTOR HP DLTS/PHASE/HZ NIT MCA	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS CLS DLS SHALL BH) (DEG. F)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PH0ENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STU FINISH AIRFLOW (CF MAX PRESSU MINIMUM FR LOUVER SIZE REFERNCE	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60 GREENHECK
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES XHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO . VENTURI VALVE & ASSOCIATED CONTRO . VENTURI VALVE SHALL FAIL IN THE LA . PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK UPPLY AIR (CFM) INIMUM TOTAL COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM COIL PRESSURE DROP (FT.) RIVE TYPE AN MOTOR HP OLTS/PHASE/HZ NIT MCA NIT MOCP	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU SS OLS DLS SHALL N HIGH SPEED ACTUAT C OLS HIGH SPEED M HIGH BH) OLS C OLS BH) OLS	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK AFJ-801	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 × 60 GREENHECK AFJ-801
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) AXIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES XHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO . VENTURI VALVE SHALL FAIL IN THE LA . PROVIDE PRESSURE SENSORS, DAMPER, 	/EL 1 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 3 CS OLS DLS SHALL BH) (DEG. F)	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STO FINISH AIRFLOW (CF MAX PRESSU MINIMUM FR LOUVER SIZE	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE DOM NO. ESIGN AIR FLOW (CFM) AXIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES XHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTROL VENTURI VALVE SHALL FAIL IN THE LA PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK UPPLY AIR (CFM) INIMUM TOTAL COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MEH) INIMUM SENSIBLE COOLING CAPACITY (MEH) INIMUM COIL PRESSURE DROP (FT.) RIVE TYPE AN MOTOR HP DLTS/PHASE/HZ NIT MCA NIT MCA AXIMUM OPERATING WEIGHT (LBS.) EFERENCE	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STU FINISH AIRFLOW (CF MAX PRESSU MINIMUM FR LOUVER SIZE REFERNCE NOTES 1. ACOUSTIC	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES XHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO . VENTURI VALVE SHALL FAIL IN THE LA . PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK UPPLY AIR (CFM) INIMUM TOTAL COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM COIL PRESSURE DROP (FT.) RIVE TYPE AN MOTOR HP OLTS/PHASE/HZ NIT MCA NIT MCA NIT MCA NIT MCA AXIMUM OPERATING WEIGHT (LBS.) EFERENCE	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 FC-2.1 1400 FC-2.1 1400 FC-2.1 1400	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 FC-2.2 1400 38 35 78/63 45 8 10 DIRECT 1/2 (2) 115/1/6 4.8 15 250 CARRIER 42DF14E	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STU FINISH AIRFLOW (CF MAX PRESSU MINIMUM FR LOUVER SIZE REFERNCE NOTES 1. ACOUSTIC 2. FRAME S	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES XHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA . PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK UPPLY AIR (CFM) INIMUM TOTAL COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) NTERING AIR TEMPERATURE (DB/WB) NTERING CHILLED WATER TEMPERATURE (HILLED WATER FLOW RATE (GPM) AXIMUM COIL PRESSURE DROP (FT.) RIVE TYPE AN MOTOR HP OLTS/PHASE/HZ NIT MCA NIT MCA NIT MCA NIT MCA NIT MCP AXIMUM OPERATING WEIGHT (LBS.) EFERENCE	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 FC-2.1 1400 38 35 78/63 45 8 10 DIRECT 1/2 (2) 115 250 CARRIER 42DF14B 1 THRU 4	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STU FINISH AIRFLOW (CF MAX PRESSU MINIMUM FRI LOUVER SIZE REFERNCE NOTES 1. ACOUSTIC 2. FRAME S 3. BLADES S	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5
ETURN VENTURI VALVE SCHEDULE – LEV ARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) AXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES XHAUST VENTURI VALVE SCHEDULE NOTE VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE & ASSOCIATED CONTRO VENTURI VALVE SHALL FAIL IN THE LA . PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK UPPLY AIR (CFM) INIMUM TOTAL COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (ME NTERING AIR TEMPERATURE (DB/WB) NTERING CHILLED WATER TEMPERATURE (HILLED WATER FLOW RATE (GPM) AXIMUM COIL PRESSURE DROP (FT.) RIVE TYPE AN MOTOR HP OLTS/PHASE/HZ NIT MCA NIT MOCP AXIMUM OPERATING WEIGHT (LBS.) EFFRENCE OTES . CAPACITY SCHEDULED SHALL BE FOR 2	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3 CS DLS SHALL BE INSTALL ST POSITION. , HIGH SPEED ACTUAT	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PH0ENIX EXVA112 1 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STU FINISH AIRFLOW (CF MAX PRESSU MINIMUM FR LOUVER SIZE TYPE MINIMUM FR LOUVER SIZE MINIMUM FR LOUVER SIZE AIRFLOW (CF MAX PRESSU MINIMUM FR LOUVER SIZE REFERNCE NOTES 1. ACOUSTIC 2. FRAME S 3. BLADES S 4. PROVIDE	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5
ETURN VENTURI VALVE SCHEDULE – LEV VARK ERVICE OOM NO. ESIGN AIR FLOW (CFM) INIMUM AIR FLOW (CFM) INIMUM AIR FLOW (CFM) IAXIMUM PRESSURE DROP IZE (IN Ø) ONTROLS ANUFACTURER ODEL NO. OTES XHAUST VENTURI VALVE SCHEDULE NOTE . VENTURI VALVE & ASSOCIATED CONTROL . VENTURI VALVE SHALL FAIL IN THE LA . PROVIDE PRESSURE SENSORS, DAMPER, AN COIL UNIT SCHEDULE (HYDRONIC) ARK UPPLY AIR (CFM) INIMUM TOTAL COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) INIMUM SENSIBLE COOLING CAPACITY (MBH) NTERING AIR TEMPERATURE (DB/WB) NTERING CHILLED WATER TEMPERATURE (HILLED WATER FLOW RATE (GPM) AXIMUM COIL PRESSURE DROP (FT.) RIVE TYPE AN MOTOR HP DLTS/PHASE/HZ NIT MCA NIT MOCP AXIMUM OPERATING WEIGHT (LBS.) EFERENCE DTES CAPACITY SCHEDULED SHALL BE FOR 2 PROVIDE UNIT COMPLETE WITH FAN, CO	/EL 1 & 2 RV-1.1 CEILING 104 830 80 0.2 10 DDC PHOENIX EXVA110 1 THRU 3	RV-1.2 CEILING 110 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.3 CEILING 111 1700 200 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-1.4 CEILING 112 1200 100 0.2 12 DDC PHOENIX EXVA112 1 THRU 3	RV-2.1 CEILING 201 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3 LOUVER SCH MARK QUANTITY SERVICE TYPE MINIMUM STO FINISH AIRFLOW (CF MAX PRESSU MINIMUM FR LOUVER SIZE REFERNCE NOTES 1. ACOUSTIC 2. FRAME S 3. BLADES S 4. PROVIDE 5. PROVIDE	RV-2.2 CEILING 202 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.3 CEILING 203 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	RV-2.4 CEILING 204 1620 100 0.2 14 DDC PHOENIX EXVA114 1 THRU 3	L-1 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3740 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5 CTURAL DRAWINGS.	L-2 5 AIR INTAKE ACOUSTIC LOUVER 12 AAMA 2604 3250 0.025 7.5 60 x 60 GREENHECK AFJ-801 1 THRU 5

4. DISCUMMENT MEANS TO BE PROVIDED BY ELECTRICAL.

								_
1 AND 1.2								
ſU−1.1A,B; 1.3A,B 〉	TU-1.5	TU-1.6	TU-1.7	TU-1.8	TU-1.9	TU-1.10	TU-1.11	IOTALS
3,550 {	700	1,700	3,200	3,200	2,200	750 }	550 3	26,500 }
1,200	400 3	<u>950</u>	1,700	1,700	1,100	<pre></pre>	100	10,850 3
1,200	400	> 950	1,700	1,700 }	1,100	300	200	11,150
42 {	14	¢ 34	60	60	39	<u>}</u> 11 {	8	394 {
4.5	1.5	<u>(3.5</u>	<u> </u>	<u> </u>	4	<u>1.5</u>	1	41.5
).5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
)DC	DDC	DDC	DDC	DDC	DDC	DDC	DDC	
PHOENIX }	KRUEGER 3	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX }	KRUEGER	
MAVA 214 3	LMHS / 8	EMAVA 114	MAVA 214	MAVA 214	MAVA 114	MAVA 110 🔾	LMHS / 8	
1 – 3, 5 – 7 3	1 - 6	(1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 - 7 }	1 - 6	

1								7
ſU−2.1	TU-2.2	TU-2.3	TU-2.4	TU-2.5A	TU-2.5B	TU-2.7	TU-2.8	TOTALS
3,120	3,120	3,120	3,120	2,020	1,800	120	580	17,000
1,600	1,600	1,600	1,600	900	900	100	400	8,700
,600	1,600	1,600	1,600	900	900 }	120	<u>3</u> 400	8,720 }
64	64	64	64	36	36	5	{ 16	349 3
6.5	6.5	6.5	6.5	4	4	0.5	2	36.5
).5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
)DC	DDC	DDC	DDC	DDC	DDC	DDC	DDC	
PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX	PHOENIX }	KRUEGER	KRUEGER	
MAVA214	MAVA214	MAVA214	MAVA214	MAVA114	MAVA114	LMHS / 6	LMHS / 8	
1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 - 7	1 - 3, 5 - 7 }	1 THRU 6	1 THRU 6	

AIR DEVICE SCHEDULE			
MARK	А	В	С
SERVICE	SUPPLY	RETURN	EXHAUST
MATERIAL	STEEL	STEEL	ALUM
FINISH	WHITE	WHITE	WHITE
PATTERN	4-WAY	SINGLE	SINGLE
		DEFLECTION	DEFLECTION
REFERNCE	KRUEGER	KRUEGER	KRUEGER
	6204	S80H	S80H
NOTES	1,2,3	2	1,2

1. PROVIDE OPPOSED BLADE DAMPER.

2. PROVIDE FRAME STYLE SUITABLE FOR CEILING SPECIFIED ON ARCH. DRAWINGS.

3. CEILING DIFFUSER SHALL BE PERFORATED TYPE.

ഗ

DRAWN BY: TCB JOB NO: 1931.000 DATE: 01/08/2020 REVISIONS <u>∕</u>3 ADD#3

02/24/2021

MECHANICAL SCHEDULES

M6.1 100% CONSTRUCTION DOCUMENTS

PLAN NORTH

◯ KEYNOTES:

- 1. NEW PANEL "F2".
- 2. NEW PANEL "2LP1".
- 3. NEW PANEL "2LP2".
- 4. NEW PANEL "2LP3".
- 5. NEW PANEL "2LP4".
- 6. NEW PANEL "G".
- 7. REFER TO MECHANICAL DRAWINGS FOR VFD'S.
- 8. 30A/3P, WP, 480V, ON ROOF.
- 9. NEW IDF RACKS.
- 10. NEW PANEL "2LP5".
- 11. NEW PANEL "G2".

ADD ALTERNATE BID #01 HVAC UNIT FOR MICROBIOLOGY ENCLOSURE AND UNIT FOR GENERAL CHEMISTRY = BASE BID.CONSTRUCTION COMPLETE AND IN PLACE.

ADD ALTERNATE BID #02 HVAC UNIT FOR ORGANIC CHEMISTRY. ENCLOSURE SHELL SPACE = BASE BID. CONSTRUCTION COMPLETE AND IN PLACE.

PLAN

NORTH

A

b ws	ARCHITECTS		
BURNS WAL 261 North Court Avenue Tucson, Arizona 85701 520.795.2705 Fax 520. www.bwsarchs.com	D-HOPKINS SHAMBACH	ARCHITECTS	

PANEL GEM	277 / 480	_VOLTS, _	3	PHASE,	4			
TYPE	_		14,000		A.I.C. RATING			
100 A. BUS 10	00 A. MAIN _(CIRCUIT BF	REAKER	MOUNTIN				
LOCATION	_							
	-		LOAD KVA		ENCLOSURE: NEMA 1			
		А	В	С				
SERVES BK	KR WIRECOND				COND WIRE BKR SERVES			
1 EF-1.1, 2.1, 2.3 20) / 12 3/4"	3 5			3/4" 10 30 / EF-1.2, 1.3, 2.2 2			
3 /			3 5					
5 4 4	3			3 5				
7 LTG-EMERGENCY 20	D/1	0.4 –			- $-$ 20/1 SPACE 8			
9	+ + + + + + + + + + + + + + + + + + +		0.4 –		10			
11	+ $+$ $+$ $+$ $+$ $+$	0.4		0.4 –	12			
	$ \psi \psi $	0.4 -						
1 J SPARE								
10								
21								
23					24			
CONTINUOUS LOAD	X 1.25	1	0.5	0.5				
NON-CONTINUOUS	LOAD X 1	8	8	8				
#		_	_	_	TOTAL CONNECTED			
	SE	9	8.5	8.5	LOAD = 25.6 KVA			
DEMAND AMPS/ PI	PHASE	33	31	31	DEMAND LOAD = 26 KVA			

PANEL MO	120 / 208	_VOLTS,	3	PHASE,	4	WI	RE	
TYPE	_		10,000	MINIMUM	A.I.C. RAT	ING		
225 A. BUS	225 A. MAIN	- CIRCUIT BF	REAKER		NG FLUSH			
LOCATION -					SURFA	СЕ ГХ		
	_		LOAD KVA				-	
		Α	B	С		RE: NE	.MAI	
SERVES	BKR WIRE COND			¥	COND WIRE	BKR	SERVES	
1 SPARE	20/1 – –	- 0.2			3/4" 10	20/1	RECEPTS	2
3							SPARE	4
5								6
7 PANEL "1LP2"		7 0.5			3/4" 10		TU'S	8
9			7 –				SPARE	10
	/ 3			8 –				12
13 PANEL "1LP3"	100/	7 –						<u> 14</u>
15			7 –					16
	3			5 –			\checkmark	18
19 PANEL "1LP4"	100/	9 –					SPACE	20
21			9 –					22
23 🗸 🏒				7 –			\checkmark	24
CONTINUOUS L	.OAD X 1.25	_	_	-	REMARKS:			
NON-CONTINU	OUS LOAD X 1	24	24	21				
#		-	_	_	TOTAL CO	NNECTE	ED	1/1/4
DEMAND KVA/I	PHASE	24	24	21		=	= <u>09</u>	rνA
DEMAND AMPS	/ PHASE	200	200	175	DEMAND	_OAD =	= <u>69</u>	KVA

PANEL E1	277 / 480		٦		
	277 / 400		14.000	FRASE,	
TYPE			14,000		A.I.C. RATING
200 A. BUS 200	A. MAIN _	CIRCUIT B	REAKER	MOUNTI	NG FLUSH 🖂
LOCATION					SURFACE 🛛
			LOAD KVA		FNCLOSURE: NEMA 1
		A	В	С	
SERVES BKR	WIRECONE				COND WIRE BKR SERVES
1 AHU-1.1 60 /	4 1"	11 7	1		1" 8 40 AHU-1.2
3			11 7		
5 3				11 7	
7 LTG 20/1	12 3/4"	1.2 –	1		20/1 SPACE 8
9			1.3 –		
11 LTG-EXTERIOR]		0.2 –	1 1
13 LTG		1.1 1			3/4" 12 20 / STERILIZER 1
15			1.5 1		
17 LTG-EXTERIOR				0.2 1	
19 STERILIZER 50 /	8 1"	9 15			1-1/4" 2 100/ PANEL "F2" 2
21			9 14		
23 / 3				9 14	
CONTINUOUS LOAD >	〈 1.25	6	5	2	REMARKS:
NON-CONTINUOUS L	OAD X 1	40	40	40	
#		_	-	-	TOTAL CONNECTED
DEMAND KVA/PHASE		46	45	42] LOAD = 131 KVA
DEMAND AMPS/ PHA	NSE	167	163	152	DEMAND LOAD = 133 KVA

	277 / 490		7	DUMOE	Λ			
PANEL 12		$_$ VOLIS, $_$	5	PHASE,		WIRE		
TYPE	_		14,000		A.I.C. RATIN	NG		
<u>100</u> A. BUS	<u>100 A. MAIN</u>	CIRCUIT BE	REAKER	MOUNTI	NG FLUSH			
LOCATION	_				SURFAC	E 🛛		
	_		LOAD KVA		ENCLOSUR	E: NEMA	1	
		A	В	С			•	
SERVES						3KR S	SERVES	
1 AHU-2.1	60 / 4 1"	11 1.5			3/4" 12 2	20 /	WH-1	2
3			11 1.5			/		4
5	3			11 1.5		3	\downarrow	6
7 LTG	20/1 12 3/4"	1.3 –			- 2	20/1	SPARE	8
9			0.9 –					10
11				0.9 –			\downarrow	12
13		1.1 –					SPACE	14
15			1.3 –					16
17 LTG-EXTERIOR				0.3 –		\checkmark	\checkmark	18
CONTINUOUS L	OAD X 1.25	3	1.5	1.5	REMARKS:			
NON-CONTINUC	OUS LOAD X 1	12.5	12.5	12.5				
#		-	_	_	TOTAL CON	NECTED		
DEMAND KVA/F	PHASE	15.5	14	14	LOAD	= _	42.3	KVA
DEMAND AMPS	/ PHASE	56	51	51	DEMAND LO	DAD =	43.5	KVA

PANEL M02						3	PF	IASE,		4		_wire			
TYPE	_			_	_	10	,000	MIN	IMUM	A.I.C	. RAT	ΓING			
225 A. BUS	225 A. BUS 225 A. MAIN CIRCUIT			JIT BF	REAKE	ER	МС	UNTI	NG FL	USH					
LOCATION	_									S	URFA	CE			
	_					LOAD) KVA			FNC		IRF			
					4	E	3	(C					·	
SERVES	BKR WIF	RECO	ND							COND	WIRE	BKF	8	SERVE	S
1 PANEL "1LP5	100/ (1) (1)	6	0.4					1/2"	12	20/	1	TU'S	2
3						5	0.5							RECEPS	4
5	/ 3							3	—		_			SPARE	6
7 PANEL "1LP6"	100/			2	-					_	_				8
9						2	-			_	_				10
	/ 3				i			2	—	_	_				12
13 PANEL "1LP7"	100/			10	-						_			SPACE	14
15						9	-			-	_				16
					1			7	-	_	_				18
19 SPACE	20/1 -		•	_	-					_	_				20
21			•			_	-			-	_	$\left \right $			22
23		·	•					_	—	-	—				24
CONTINUOUS L	OAD X 1.	.25		-	-				-	REM	ARKS	•			
NON-CONTINU	DUS LOAD	X 1		1	9	1	7	1.	2						
#			_		-		_	-			L CC	ONNE	CTED	48	K//A
DEMAND KVA/	HASE			1	9		/	1	2		,			40	
DEMAND AMPS	/ PHASE			1	59	1	42	1(00	DEM	and	LOAD) = _	4ð	_ KVA

PANEL <u>G2</u> <u>120 / 208</u>	VOLTS, _	3	PHASE,	4	WIRE
TYPE	_	10,000		A.I.C. RATING	
225 A. BUS 225 A. MAIN _	CIRCUIT BE	REAKER	MOUNTI	NG FLUSH	
LOCATION –				SURFACE	X
_		LOAD KVA		ENCLOSURE:	NEMA 1
	A	В	С		··· <u> </u>
SERVES BKR WIRE CONI				COND WIRE BKI	R SERVES
PANEL "2LP4" 100/ (1) (1)	6 –			20/	1 SPARE 2
		6 –			4
			4 –		6
PANEL "2LP5" 100/	6 –				8
		5 –			10
			4 –		12
DI 20/1 12 3/4"	1.6 –				SPACE 14
		1.6 1		3/4" 12	RECEPTS 16
SPARE			1.6 1		18
VP-1 60 6 1"	6 1				20
		6 1	i		22
			6 1		24
CONTINUOUS LOAD X 1.25	_	_	_	REMARKS:	
NON-CONTINUOUS LOAD X 1	21	21	18		
	_	_	_	TOTAL CONNE	ECTED
DEMAND KVA/PHASE	21	21	18	LOAD	= <u>60</u> KVA
DEMAND AMPS/ PHASE	175	175	150	DEMAND LOAI	O = 60 KVA

○ KEYNOTES:

1. REFER TO ONE LINE DIAGRAM.

PANEL	SCHEDI
GEM	FI
мо	MO2
G	G2

CONSTRUCTION DOCUMENTS

SECTION 233600 - AIR TERMINAL UNITS

PART 1 GENERAL

- 1.1 WORK INCLUDED
- A. Single duct terminal units.
- 1.2 RELATED WORK
 - A. Section 230500 Common Work Results for HVAC
 - B. Section 230529 Hangers & Supports for HVAC
 - C. Section 230593 Testing, Adjusting & Balancing For HVAC
 - D. Section 230900 Instrumentation & Control For HVAC
 - E. Division 26 Electrical Requirements
- 1.3 REFERENCES
 - A. NFPA 90A Installation of Air Conditioning and Ventilation Systems.
 - B. UL 181 Factory-Made Air Ducts and Connectors.
 - C. ARI 880 Air-Conditioning and Refrigeration Institute Standard Rating Conditions for Air Terminals
- 1.4 SUBMITTALS
 - A. Submit shop drawings in accordance with Section 230500.
 - B. Submit shop drawings and product data sheets indicating configuration, general assembly, and materials used in fabrication. Include catalog performance ratings which indicate air flow, static pressure, and radiated sound power levels (2nd through 7th octave bands) at design maximum operating conditions.
 - C. Submit manufacturer's installation instructions.
- 1.5 OPERATION AND MAINTENANCE DATA
- A. Submit operation and maintenance data.
- B. Include manufacturer's descriptive literature, operating instructions, maintenance and repair data.
- C. Include directions for resetting all control setpoints.
- 1.6 WARRANTY
 - A. Provide one year manufacturer's parts and labor warranty.

PART 2 PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Products manufactured by Trane, Carrier, Titus, Krueger, Anemostat, Nailor, or Price meeting these specifications.
- B. Unit performance data must be Rated in Accordance with ARI Standard 880, and must display the ARI Symbol on all standard units.
- 2.2 PERFORMANCE
- A. Unit performance shall meet or exceed performance scheduled on the drawings.
- 2.3 GENERAL
- A. Identify each terminal unit with clearly marked identification label and airflow indicator. Label shall include unit nominal air flow, maximum factory set air flow and minimum factory set air flow.
- 2.4 FABRICATION
 - A. Casings: Units shall be completely factory assembled, manufactured of corrosion protected welded steel, and fabricated with a minimum of 18-gauge metal on the high pressure (inlet) side of the VAV dampers and 22-gauge metal on the low pressure (outlet) side and unit casing.
 - B. Lining: Minimum 1/2 inch thick tuff-skin mat or aluminum foil-faced glass insulation, 1.5 lb/cu ft. density, meeting NFPA 90A requirements and UL 181 erosion requirements.
 - C. Assembly: Air volume damper, fans and controls in single cabinet.
- 2.5 VOLUME DAMPER
- A. Air volume control dampers shall be factory calibrated and tested assembly consisting of air modulation dampers and extension for connection to control actuators. All actuator linkages shall be protected by a sheet metal enclosure.
- 2.6 CONTROLS
- A. Provide inlet air flow sensor, control cabinet, and 120/24VAC control power transformer with inlet/outlet disconnects.

PART 3 EXECUTION

- 3.1 INSTALLATION
 - A. Install in accordance with manufacturer's instructions.

END OF SECTION

SECTION 233713 – DIFFUSERS, REGISTERS & GRILLES

PART 1 GENERAL

- 1.1 WORK INCLUDED
 - A. Supply, Return, Transfer and Exhaust Air Devices and Accessories.
- 1.2 RELATED WORK
 - A. Section 230500 Common Work Results for HVAC
 - B. Section 230593 Testing, Adjusting & Balancing For HVAC
 - C. Section 233113 Ductwork
 - D. Section 233300 Air Duct Accessories
- 1.3 QUALITY ASSURANCE
- A. Make air flow tests and sound level measurement in accordance with applicable ADC equipment test codes and ASHRAE standards.
- B. Manufacturer shall certify cataloged performance and ensure correct application of air outlet types.
- 1.4 SUBMITTALS
 - A. Submit in accordance with Section 230500.
 - B. Submit product data and shop drawings covering each item together with schedule of outlets, listing cfm, neck velocity, NC level and Ak factor and air flow measurement procedures.
- 1.5 JOB CONDITIONS
 - A. Review requirements (including architectural drawings) of outlets as to size, finish, and type of mounting prior to submitting shop drawings and schedules of outlets.
 - B. Check location of outlets and make necessary adjustments in position to conform with architectural features, symmetry, and lighting arrangement.
- PART 2 PRODUCTS
- 2.1 ACCEPTABLE MANUFACTURERS
- A. Products manufactured by Krueger, Tuttle & Baily, Titus, Anemostat, J&J, Price or Nailor, meeting these specifications are acceptable.
- 2.2 GENERAL REQUIREMENTS
 - A. Provide air devices equal in all respects to those scheduled on the drawings.
 - B. Rate units in accordance with ADC standards.

- C. Base air outlet application on space noise level of NC 35 maximum in all areas unless indicated otherwise on drawings.
- D. Provide supply outlets with sponge rubber seal around edge.
- E. All devices shall be factory finished.
- F. When required provide air devices factory installed in metal panels painted to match air device finish. Panel shall be suitable for insertion into lay-in-tile ceilings.

PART 3 EXECUTION

- 3.1 INSTALLATION
 - A. Install items in accordance with manufacturer's printed instructions.
 - B. Paint ductwork visible behind air outlets matt black.
 - C. Seal square to round adaptors or lined plenum boxes air tight to diffusers or grilles.
 - D. When required cut metal panels for insertion in ceiling at grid location where tiles may be less than nominal size. Center diffuser or grille within modified panel.

END OF SECTION

SECTION 237313 - AIR HANDLING UNITS

- PART 1 GENERAL
- 1.1 WORK INCLUDED
 - A. Air Handlers
 - B. Electrical and Controls
 - C. ETL Listed and Labeled
- 1.2 RELATED WORK
 - A. Section 230500 Common Work Results for HVAC
 - B. Section 230519 Mechanical Piping Specialties
 - C. Section 230523 General-Duty Valves For HVAC
 - D. Section 230593 Testing, Adjusting & Balancing For HVAC
 - E. Section 230900 Instrumentation & Control For HVAC
 - F. Section 232113 Hydronic Piping
 - G. Section 233113 Ductwork
 - H. Section 233300 Air Duct Accessories
 - I. Division 26 Electrical Requirements
- 1.3 QUALITY ASSURANCE
 - A. Provide fans bearing AMCA certified rating seal.
- 1.4 SUBMITTALS
 - A. Submit shop drawings and product data in accordance with Section 230500.
 - B. Submit coil capacity data, motor data and filter data.
 - C. Submit fan curves showing fan performance with system operating point plotted on curves.
 - D. Submit dimensioned data.
 - E. Submit manufacturer's installation instructions and maintenance and operating procedures.
- 1.5 REFERENCED STANDARDS
 - A. ASHRAE Test Standard 52-76.

- B. UL listing for filters, Class 2.
- C. ARI Standard 410.

PART 2 PRODUCTS

- 2.1 ACCEPTABLE MANUFACTURERS
 - A. Units manufactured by Carrier, Daikin, Energy Labs, Huntair, BASX Solutions, Nortek, Temtrol, Trane, Thermal Corporation, York meeting these specifications are acceptable.
- 2.2 TYPE AND PERFORMANCE
- A. Provide draw-through design as indicated on contract drawings.
- B. Unit shall meet or exceed the performance schedule on the drawings.
- 2.3 CASING
 - A. Provide minimum 2" thick double wall AHU casing. Exposed insulation is not acceptable. Provide an insulation system that is resistant to mold growth in accordance with a standardized test method such as UL 181 or ASTM C 1338. Encapsulate insulation with sheet metal so that air does not contact insulation. Solid lined panels insulated with spray injected foam shall be hermetically sealed at each corner and around their entire perimeter, to eliminate airflow through the panel and to eliminate microbial growth potential within the casing wall. Provide casing with minimum thermal resistance (R-value) of 17 hr-ft²-°F/BTU. Provide panels with acoustical perforated liner in the fan section. Interior liner will be perforated galvanized. Minimum perforated panel thermal resistance (R-Value) will be R11 hr-ft²-°F/BTU.
 - B. Provide a unit frame of galvanized steel that provides the overall structure of the unit and does not rely on the casing panels for structural integrity. Insulate frame in the same manner as panels, roof, and floors.
 - C. Provide AHU casing that leaks no more than 1% of design airflow at +/-8" w.g.
 - D. Provide wall panels and access doors that deflect no more than L/240 when subjected to +/- 8" w.g. 'L' is the panel-span length and 'L/240' is the deflection at panel midpoint. Provide floors and roofs that deflects no more than L/240 when subjected to a 300 lb load at mid-span. 'L' is the panel-span length and 'L/240' is the deflection at panel midpoint.
 - E. Provide double wall hinged access doors for access to sections and components requiring servicing. Doors shall be adequately sized and swing 180 degrees to allow operating personnel to access unit. Doors shall be of the same construction as the wall casing. Provide gasket seals, door latch and handle assemblies.
- 2.4 FANS
 - A. Fan performance shall be AMCA certified.
 - B. All fans shall be statically and dynamically balanced including final trim balance at the factory for quiet operation.
 - C. Fans shall be multiple single width single inlet direct drive airfoil plenum fans. Fans shall not pass through their first critical speed before reaching operating RPM.

- D. Provide solid steel fan shafts with self-aligning ball bearings having minimum average life of 200,000 hours. Extend lubrication fittings to exterior of fan casing.
- E. Provide OSHA fan and drive guard. Provide fan inlet guard.
- F. Fan shall be isolated from unit with 1" minimum deflection spring isolators with seismic restraints.
- 2.5 FILTER SECTION
 - A. Filters shall be provided with holding frames and all required hardware shall be serviceable from both sides of the unit.
 - B. Filters shall be 2" thick MERV 8 efficiency, disposable, pleated media type. The efficiency shall be per the ASHRAE Test Standard 52-76. Filters shall be UL listed, Class 2.
 - C. The media shall be a nonwoven cotton fabric and shall be reinforced with a wove scrim backing. The media support grid shall be welded wire with an approximate free area of 96 percent. The wire grid shall be bonded to the media.
 - D. The enclosure frame shall be constructed of a rigid heavy- duty chipboard secured to the air entrance and exit side of each pleat.
 - E. Holding frames shall be factory fabricated of 16 gauge minimum galvanized steel and shall be provided with gaskets and spring type positive sealing fasteners.
 - F. An additional filter section shall be provided for future carbon filters or 12" thick MERV 13 filters.
 - G. Provide flush mount differential pressure gauge across the pre-filter section.
 - H. One set of filters shall be provided with the unit during construction and one set for testing and balancing of the unit.
- 2.6 COILS
 - A. Enclose coils in coil section with headers and U-bends fully contained within the casing.
 - B. Coils shall be removable from the unit without dismantling the unit. Water coil capacities, pressure drops and selection procedures shall be certified in accordance with ARI Standard 410-64. Coils shall have same end supply and return connections unless otherwise indicated. All coils shall be leak tested by the manufacturer.
 - C. Coils shall be of the extended surface type meeting all conditions and having the minimum face area and pressure drops scheduled on the drawings. Coils shall be constructed of 5/8" O.D. copper tubes and plate type aluminum or copper fins bonded to the tubes by mechanical expansion. Minimum acceptable tube thickness is 0.02" and minimum acceptable fin thickness is 0.008. Coil headers shall be constructed of close gained cast iron extra heavy copper or extra heavy red brass. The coil section shall be provided with a galvanized steel casing no lighter than 16-gauge. Galvanized intermediate tube support sheets shall be provided in coils having tube lengths in excess of 48" and on long coils the spacing of coil supports shall not exceed 48".
 - D. Maximum coil face velocity shall be 450 fpm. Maximum fin spacing shall be 12 fpi.

E. Condensate drain pans shall be fabricated from 16 gauge 304 stainless steel. Drain pans shall be double sloped at minimum 1/8" per foot for complete drainage with no standing water in the unit.

2.7 MOTORS AND VARIABLE FREQUENCY DRIVE

- A. Motors shall be open-drip-proof premium efficiency type with a minimum 1.15 service factor with greasable ball bearings and of the voltage scheduled on the drawings. Motors shall be inverter ready and compatible with variable frequency drive.
- B. Factory install and wire variable frequency drive with manual by-pass starter equal of ABB Model ACH550 with full ASHRAE BACnet communication connection.
- C. Provide wiring from VFD to fan motor per NEC requirements. Provide conduit routing through unit exterior for single point field electrical connection to unit.

2.8 CONTROLS

- A. Provide factory installed and wired 24VAC transformer connected to the fan motor primary power with hi/lo disconnects. Transformer shall be adequately sized for air handler field mounted controller and all associated sensors and actuators.
- B. Provide factory installed and wired control components described in the contract documents including the control drawings, sequence of operation, and Section 230900. Provide wiring from each device to a terminal strip located in a control enclosure with sufficient space for a field mounted air handler controller. All wiring and terminals shall be clearly labeled. Devices and sensor to be factory shall meet all the requirements of Section 230900 and shall include the following:
 - 1. Variable frequency drive enable/disable, frequency input, operating frequency, alarm status, and full BACnet communication connection.
 - 2. Fan high limit differential pressure sensor factory interlocked to disable VFD if fan pressure exceeds the value described in the sequence of operation.
 - 3. Full face averaging supply air temperature sensor.
 - 4. Freeze stat set at 40F and wired to shut-down fan.
 - 5. Supply airflow monitor to measure and display supply air cfm.
 - 6. Outside airflow monitor to measure and display outside air cfm.
 - 7. Filter differential pressure gauge and sensor, photohelic gauge.
 - 8. Outside air damper with 24V N.C. modulating actuator.
- C. Factory calibrate and commission all controls.
- 2.9 ELECTRICAL
- A. Provide a U.L. listed and labeled (as a completed assembly) single source power and control panel including all of the necessary starters, VFDs, transformers, branch circuit protection and main fused disconnect, factory wired to the air handler's electrical devices such as fan motors, and controls.

PIMA COMMUNITY COLLEGE WEST CAMPUS SCIENCE LABS CONSTRUCTION DOCUMENTS

B. Provide LED lighting in each air handler section in vapor proof marine-type fixtures with a labeled toggle switch mounted near the filter access door. Provide all conduit and wiring for the lights and switch to the main control panel. All wiring and installation shall be per NEC requirements and be UL listed.

PART 3 EXECUTION

- 3.1 ASSEMBLY
 - A. Assemble fan by bolting sections together to make single unit.
- 3.2 FACTORY TESTING
 - A. Weigh fan and motor assembly at factory for isolator selection. Statically and dynamically balance fan section assemblies. Fan section assemblies include fan wheels, shafts, bearings, isolation bases and isolators. The assembled fan section shall be run and the peak to peak displacement shall be measured at the pillow block bearing in all three dimensions per ASTM DH167 Standards. Allow spring isolators to free float when performing fan balance. Measure vibration at each fan shaft bearing in horizontal, vertical and axial directions. Balance at design RPM's as scheduled on drawings and balance in accordance with ARI Guideline D or better. For fan sections controlled by variable frequency drives, balance at all speeds between 25% and 100% of design RPM.
 - B. Balance variable volume fan assemblies from 10% to 100% of design RPM.
 - C. Manufacturer shall hipot test wiring intended to carry voltages greater than 30VAC.
- 3.3 INSTALLATION
- A. Install items in accordance with manufacturer's instructions and as shown on the drawings.
- 3.4 START-UP
- A. Provide the services of a factory authorized service technician to assist the installing contractor with startup services and instruct the contractor and owner's personnel in the maintenance and use of the equipment.

END OF SECTION